
INTERGRANULAR FRACTURE AT ELEVATED TEMPERATURE* 

RISHI RAJt and M. F. ASHBY: 

The kin&c problem of intergranular fracture at elevated temperatures by the nucleation and growth 
of voids in the grain boundary is analvsed in detail. Diffusional transport accounts for the void growth- 
rate in the analysis. and the nucleation.rate is obt.ained bg usmg the concept.s of classical nucleat.ion 
theory. The two are compounded to calculate the time-to-fracture. The itiuence of grain size. strain- 
rate, temperature. second phase particles and int.erface energies is taken into account. Particular atten- 
tion is given to the presence of inclusions in the boundary; t,he role of the stress concentration at the 
interface between the inclusion and the matrix, and the energy of this interface is invest,igated. 

RUPTURE INTERGRAXULAIRE AUX TEMPERATURES ELEVEES 
On analyse en d&ail le probleme cinCtique de la rupture intergranulaire aux t.empBratures &vbes 

par la germination et la croissance de cavitbs aus joint,s de grains. Dans cette analyse, le transport de 
mat&e par diffusion rend compte de la vitesse de croissance des cavitbs. et l’on obtient la vitesae de 
germination en utilisant les concepts de la thCorie classique de la germination. On combine croissance et 
germination pour calculer le temps jusqu’ri rupture. On tient, compte de l’influence de la taille des grains, 
de la ritesse de dbformation, de la t,emp&ature. de particules d’une seconde phase et des &erg& d’inter- 
face. On insiste en particulier sur la pr&ence d’inclusions dans les joints. On Ptudie le rBle de la con- 
centrat.ion de contraintos & l-interface inclusion-matrice, et de l’energie de cet interface. 

IKTERGRANULARER BRFCH BE1 HiiHEREI’; TEMPERSTUREK 

Da.s Hinet.ikproblem des intergranularen Bruchs bei h(iheren Temperat,uren durch Keimbildung untl 
Wachstum von Hohlriiumen in der Korngrenze wird ausftihrlich untersucht. Die Analgse zeigt. da5 Diffu- 
sionstransport zum Wachstum der HohlrBume ftihrt und da5 die Keimbildungsgeschwindigkeit mit dem 
Konzept der klassischen Keimbildungstheorie geaonnen werden kann. Aus beiden wird die Zelt bis zum 
Bruch bercchnet. Der Eitiu5 von KorngrBDe. llbgleitgeschnindigkeit. Temperatur. Teilchen der 
zweiten Phase und GrenzAiichenenergien nird beriicksichtigt. 
Einschliissen in der Horngrenze betracht.et. 

Insbesondere nird die Gegenwart von 
Die Rolle der Spannungskonzentration an der Grenzfliiche 

znischen Einschlu5 und Matrix und die Energie dieser Grenzfliiche werden untersucht. 

1. INTRODUCTION 

Fracture of polycrpstalline solids under creep con- 
ditions can be caused by the growth and coalescence 
of voids on the grain boundaries. Under the right con- 
ditions, t,he voids grow by t.he diffusive motion of 
vacancies t,o them.(l) The same fracture mechanism 
has been held responsible for the minimum in time-to- 
fracture, or in the ductilit,y, somet,imes observed when 
polycrystals are pulled in tension at aconstantrate.‘2s3) 
The diffusional growth of voids has been analysed 
by Speight and Harris@) and earlier by Hull and 
Rimmer,‘“) and is (at least partly) explained. Their 
nucleat,ion. on the other hand, is still not, completely 
underst’ood : measurements of their nucleation-rat,e, 
for instance, are inconclusive.(1r6) It has been sugg&ed 
that, stress concentrations at, inclusions and t,riple 
points can lead t,o void nucleation.‘7) 

_.4n analysis is presented here which envelopes many 
of t.he aspects of intergranular fracture mentioned 
above and which can be used to calculate the time to 
fracture for a given grain size, st,rain-rate, temperature, 
size and density of second phase particles in the bound- 
ary, and t.he various interface energies. It, uses a unified 
approach whereby different void configurations (at 
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least five are possible) can be dealt with simultane- 
ously. We first, calculate the time-to-fracture when a 
fixed number of pre-existing voids is present. Next 
we apply classical nucleation theory to the nuoleation- 
rate of the voids on non-sliding boundaries and on 
boundaries which slide. The growth-rate and t.he 
nucleation-rate are then compounded, using a numeri- 
cal method. to calculate the time-to-fracture. 

Sliding at a grain boundary which contains in- 
clusions can concentrat,e the tensile stress at the inter- 
face at which the inclusion and the mat’rix meet. We 
calculate this interface stress (using an upper bound 
crit,erion) and the new nucleation rate and time-to- 
rupture. The combination of the stress concentration 
and the high interface energy at, an inclusion makes 
it a probable site for void nucleation. The calculations 
lead to the conclusion t,hat inclusions should be largely 
responsible for intergranular fracture at elevated tem- 
peratures in polycrystals, and predict the influence of 
grain size, inclusion size and density, and strain-rate 
on the ductilit,y of polycrystals. 

The notation used in this paper is summarized in 
Table 1. 

2. VOID GEOMETRIES 

Voids formed at the grain boundaries can have differ- 
ent, shapes depending on whether they are formed at 
two-grain junct.ions, three-grain junctions, four-grain 
junct,ions or at t,he interface of inclusions present in 
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the grain boundaries. All voids, however, have two 
features in common: t,he free surfaces of the voids 
are spherical segments (provided that surface diffusion 
is rapid enough to maintain the uniform curvature? 
as the void grows) and the angles formed between the 
void and the interfaces which contain it must be such 
as to sat.isfy equilibrium between the surface tension 
forces in question. The voids considered in this paper 
fall into two categories: voids formed in inclusion- 
free grain boundaries ; and voids formed in boundaries 
which contain inclusions. 

2.1 Voids ‘in inclusion-free boundaries 

Figure 1 shows the shapes of voids at two-grain junc- 
tions, t,hree-grain junctions and four-grain junctions. 
The geometry of these voids is described by the radius 
of the void surface, r, and the angle CL formed at the 
junction of the void and the grain boundary. This 
angle is dictated by equilibrium between surface 
tension forces at the junction, so that: 

a = cos-’ ( > 1LB 
2Y 

where yB is the energy (per unit area) of the grain 
boundary and y is the energy of the free surface of the 
void. (Typically for clean surfaces in pure metals, 

YE - Y 12 and a m 7P.) 

f This is not always true. Under conditions that cause a 
void to grow rapidly, matter is removed from its perifery by 
grain boundary diffusion faster than surface diffusion can 
redistribute matter on the void surface. It will then become 
increasingly penny-shaped, and spread in the boundary plane 
faster than calculated here. For simplicity we neglect this 
effect. 

Three geometric properties of the void-its volume 
V, its free surface area S and the grain boundary area 
B that it replaces-can be expressed as functions of r 
and x. In general: 

s = r’F&) (2b) 

B = r2FB(r). (2c) 

The fun&ions of a depend on the void type. They 
have been calculated@) and are quoted in Appendix I 
for three- and four-grain junctions. For two-grain 
junct.ions they are : 

Fv(“) = 27r 9 -j- (_ - 3 co9 a f cos3 x) (3a) 

F&.(x) = 47r( 1 - COY X) (3b) 

Note that as a increases to ~12, equations (2 and 3) 
give t,he properties of a sphere. Remembering that 
the radius of the circle of intersection of the void with 
the boundary is rB = r sin 5c it can be seen that, as ‘x 
decreases to zero, equations (2 and 3) give the prop- 
erties of a penny-shaped disc. 

2.2 Voids formed at irwlusio~ns 

Figure 2 shows that two types of voids can form at 
inclusions. One lies complet.ely on t,he inclusion- 
matrix interface (Type A), and the other extends into 
the grain boundary (Type B). Two new angles, 13 and 

“P 

TYPE A 

BOUNDARY- 

TYQE B 

Fro. 2. Two types of voids which can form at inclusions 
present in a grain bondary. 
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p are needed to describe them. They are shown in 
Fig. 2 and satisfv the following interface energy rela- I 
tionships : 

p = cos-l [YIB) 1’1) (4) 

and 

YB p = cos-l - . 
i 1 %I3 

(5) 

where 1~~ is the energy of the inclusion free surface and 
;fIB is the energy of the inclusion-matrix interface. 

The geometrical properties of the Type A void are 
given to a good a,pproximation (provided the void is 
small compared with the inclusion) by equat,ion (2) and 
t,he following angle functions : 

F, = ; (2 - 3 cos j3 + cos3 ,9) (64 

F, = 2x(1 - cos /!?) (6b) 

FB = ~7 sin* 8. (6~) 

The properties of t’he Type B voids are more difficult 
t.o calculat,e. The exact calculat,ion is given in Ap- 
pendix I but, approximately (to within a fact,or of two) 
t,he volume is given by: 

I cos3 (“+;-“)]. (7) 

The reason for this approximation is evident by in- 
spection of Fig. 2. 

In the calculations to follow, we shall use the ex- 
pressions in equations (l-7) and the equations in Ap- 
pendix I. 

3. TIME TO FRACTURE: FIXED NUMBER 
OF NUCLEI 

In t’his section we assume that a fixed number of 
void nuclei exist,, and can grow, as soon as a stress is 
applied to the hot specimen ; and we calculate the 
time-to-rupture. For this purpose we consider a 
periodic array of voids in a grain boundary across 
which a tensile st*ress CT= is applied. Voids will grow 
in volume by the diffusion of matter from t.he void 
surface into t.he grain boundary adjacent to the voids 
as shown in Fig. 3. 

Diffusion occurs through the boundary and through 
the lattice. The st,ead;r--state growth of voids by 
boundary diffusion has been calculated by Hull and 
Rimmert5) and Speight and Harris.t4) Though these 
solutions are a tolerable approximation for a wide 

-RAmUS n 

GRAIN BOUNOARY - I 1 

o*o 0 
-RADIUS h, 

p 0 0 
iZL---- 

0 0 0 

FIG. 3. A periodic array of voids in a grain boundary. ;i 
tensile stress of oa is applied normal to the boundary. 

range of void sizes and stresses, they are not strict,l> 
correct because they used wrong boundary conditions 
in solving the diffusion equation. 

A calculation that avoids this error is given in 
Appendix II. The rate-of-growth of the volume of 
voids which project, a circular cross-section of radius 
rB in the grain boundary and are spaced an average 
distance 21 apart, when growth is by boundary diffu- 
sion, is: 

(+)(1-g X I , 

log, ( J- 1 

(8) 

- - 3 TB 4+ & ( 1 _ 12 414 7B2 1 

1 
where Y is the radius of curvature of the void surface, 
SL is the atomic volume and D& is the boundary diffu- 
sion coefficient, times the boundary t,hickness. The 
equivalent, solution for t.he volume diffusion case is 
obtained by making the usual approximation:($) 

(f)Vd. dift. = ($)I3 z . (‘) 

This contribution is added to that. given by equat,ion 
(8) to give the total growth-rate of a void. In practice 
it. is seldom t,he dominant conbribution. 

To calculate the time to fracture we define t,he area- 
fraction of voids in a grain boundary, A(t), as : 

A(t) = ‘$ . (10) 
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It is a measure of the damage to the material ; that is, 
extent to which separation has progressed. 

Rupture takes place after an elapsed time t, when 
a reaches a final value A,, which we will take to be 
0.5. In any real material, holes will nucleate and grow, 
slowly at first, and then more rapidly as the local load- 
bearing cross-section is eat.en away and the local stress 
rises. The final fracture must involve the tearing or 
rapid plastic deformation of the ligaments between 
the voids; but because hole growth in this final phase 
is rapid by any mechanism, it occupies only a small 
part of the life, and we ignore it in calculating t,. 

The time to fracture, t,, has been derived in Ap- 
pendix II : 

where p is the number of voids per unit area of the 
boundary. 

The integral in equation (11) is defined by equation 
~~2.12). Its value is 0.06 as shown in Fig. A2.1 and 
as explained in Appendix II. The value of the integral 
is insensitive to A,, when A,,, > 0.1 and changes 
very rapidly for A,,, < 0.1, implying that most oft, 
is spent in the early stages of void growth. 

The dependence oft, on the shape functions Fv/Fg2 
is shown in Fig. 4. It increases almost linearly with a. 
Note that thin penny-shaped voids can be approxi- 
mated by a small a while nearly spherical voids by a 
large a. 

For boundary diffusion t, varies as l/~~/~. If the 
voids were growing by volume diffusion then, in view 
of equation (9), t, would vary as l/p. The time to 
fracture, normalized with respect to the stress, is 
plot,ted in Fig. 5. (The physical constants for copper 
used in the calculation are given in t,he Nomenclature : 
x was taken to be n/3.) Note that volume diffusion 
dominates only when void densities are less than 

I 119 I I . 
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FIG. 4. Dependence of time-to-fracture upon Q for two 
grain junctions for a fixed number of nuclei. 

TIN2 TO FnaCTUnC 
FIXED NO. NUCLEI 

-0.7 0.1 0.9 1.0 1.1 1.2 1.3 

I/T c 1000/%I 

FIG. 5. Variation of time-to-fracture with temperature 
for a fixed number of nuclei. B is the shear modulus. The 

data is for copper (Nomenclature). 

10s voids/cm2. Typically, at a stress a, = lo-’ G, at 
700°C and for a void density of lo8 voids/cm2 fracture 
would occur in one day. 

4. NUCLEATION OF VOIDS 

In contrast to the last section, we here assume that 
no voids exist in the virgin specimen, but that t,hey 
must first be nucleated before they can grow. For 
this purpose we consider the nucleation of a void in a 
grain boundary across which a tensile stress IS” acts. 
The factors contributing to the change in free energy 
of the system as a result of forming one void nucleus 
are : (a) the work done by the system on its surround- 
ings, (b) change in the interface area-and thus 

energy -within the system and (c) change in the 
stored elastic energy in the system. Since the term (a) 
is of order on and the term (c) is of order u,,~/_“E, and 
since E > (TV, term (c) may be neglected in comparison 
with (a). Recalling equations (2) we get the change in 
free energy : 

AG = -r3Fu(a)u, f r2[yFs(r) - yBFB(a)]. (12) 

The critical radius, r,, at which AG reaches a maxi- 
mum, and the magnitude of this maximum, AGc, can 
be calculated using equations (12, 2 and 3) and the 
equations in Appendix I. The result is a general one 
and is applicable to all types of void configurations: 

zy 
rc = - 

and 

rc3FL,(xb,, 
AG, = ., . (14) 
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Alternatively LIG, can be written as 

Lc’ = (Volume of t.he void of critical size) x CI, . 

‘c .I 

(lB) 

If pmss is the maximum number of pot,ential nuclea- 
tion &es in the grain boundary per unit area, then the 
number of critical nuclei per unit area is 

(16) 

The number of supercritical nuclei formed per 
second is pr times the time-dependent probabili@, 
pt. of adding one vacancy to the critical nucleus. p, 
can be derived from the jumping frequency of a 
vacancy, which is related t,o t.he boundary self diffusion 
coefficient, and from the probability of finding a 
vacancy at the perimeter of the nucleus of critical 
size :Il”)t 

Pt = 
4ay D,6 
- - exp (a,Cl/kT). 
a,$2 R’ 3 

(17) 

Since usually aQ/kT Q 1. combining equations (13-17) 
leads to the nucleation rate: 

p = Q4iSa, 
3 D,d(l T $)(pmax - p) 

x exp [-(*)I. (13) 

The exponential fact’or above is the dominant in- 
fluence in the t,emperature dependence of nucleat.ion; 
F,.(n), y and ull are, therefore, the critical parameters 
in determining the nucleat,ion rate. Kate that F,,(a) = 

0 if: x = 0 at, t,wo grain junctions, 0 5 CL 5 x/S at 
three grain junctions. and 0 5 a < sin-l (4) at four 
grain junctions; at t.hese values of a t,here is no kinetic 
barrier to nucleation. However, F,(x) increases 
rapidly as a increases beyond these values. 

5. TIME TO RUPTURE II: CONTINUOUS 
NUCLEATION, NO GRAIN-BOUNDARY 

SLIDING 

The compound problem of nucleation and growth 
of voids is solved by combining equation (11) with (18) 
since p, the void density. non‘ becomes t,ime-dependent. 
The new equation for t, is: 

3” ; ilD,d F;*(X) 0.5 = zL_ - c - 
3 kT 7. P,.(z) 

1, 1, ss pl;*(t - r) ~(l’)f(A(t - T)) df dl’. (19) 
0 I‘ 

f This robabihty is the numher of p&feral atom sites 
2nrRbWJ R timer the probability D,/R2 3 that one jumps 7 
away from thp void. The factor eb$‘xT allows for the change 
m vacancy concentration caused by the stress. In obtaining 
equation I 17). we hare approrimated ra by r, = Zyja,. 

The numerical procedure for solving for t, in the above 
equat,ion is described in Appendix III. 

In this section we consider the case where the normal 
stress in the boundary which causes nucleation, u, 
(equation 18), is equal to the applied stress, a, ; no 
stress concentration occurs in the boundary as a result 
of gra.in boundary sliding, or as a result, of a slip within 
a grain being obstructed by a boundary. 

As an example, consider a copper polycrystal with 
a grain size of 10 ,um, strained at a constant. strain-rat.e 
of 10-4/sec. ,4t high temperatures, t,he polycrystal 
will flow predominantly by power-h creep, or (very 
close to its melting point) by diffusionul ~Iow. At 
lower t,emperatures its flow is predominantly by the 
glide m.otkon of dislocations. The stress required for 
flow at, a constant, rate depends on the way in which 
t.he kinetics of the dominant mechanism depend on 
t,emperature, and t,hus varies in a complicated wa? 
wit’h temperat’ure. Its behaviour has been described, 
compared wit’h experiment, and presented in deforma- 
tion-mechanism diagrams, in earlier publications;‘lr.lz’ 
t’he stress required to maintain a strain-rat,e of 10-4/sec 
in a copper polycrpstal was calculated by t,he method. 
and using the data, given in t,hesereferences. Theresult 
is shown in Fig. 6. This relationship between stressand 
temperature has been used to calculate the t,ime-to- 
rupture for the five possible configurations. These 
time-to-rupture curves are shown in Figs. 7. All are 
calculated for a strain-rate of IO-h/see, a grain size of 
10 pm, and an inclusion densit’y of 10IO/mZ. 

The important features of these curves are : 

(a) Ductility minimum 

All curves show a minimum t,ime-t,o-fracture at an 
int,ermediate t’emperat.ure. This is because the rate of 
fracture is proportional to the product of the nuclea- 
tion-rat,e and the growth-rate of the voids. As the 
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Fra. 6. Variation of st,ress with temperature when a poly- 
crystal of copper of grain size 10 irm is strained at 1W4/src. 

Dat,a from Rcfti. 11 and I-7. 
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FIQ. 7(c). Void nucleation and growth at inclusions for 
Type -4 voids with no sliding. 
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FIG. ?(a). Void uuolestion and growth at two grain junc. 
tions with no sliding. 
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Fia. 7(b). Void nucleat,ion and growth at two, three and 
four grain junctions with no sliding. 

0.2 0.3 0.4 0.5 0.6 0.7 0.E 

TEMPERATURE (OK/ 1,) 

FIG. 7(d). Void nucleation and growth st iueiusions for 
Type B voids with no sliding. 

temperature increases, the stress required to maintain 
a given strain-rate falls in such a way that t,he groxth 
rate increases, but the nucleation rate decreases. At 
low temperatures nucleation occurs readily, but the 
growth rate is small and determines the rupture life, 
whereas at high temperatures growth is fast and it is 

life. This results in a minimum value for gF at an int,er- 
mediate temperature. At temperatures above 0.7T_,, 
nucleation often ceases complet.ely, which precludes 
intergranular fracture. Note that the minimum moves 
to a lower temperature as x increases. The very sharp 
minimum is partly due to our assumption of a unique, 

the nucleation rate that is small, and determines the uniform grain-size, and nucleus ~t~bution, so t,hat 
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all grains cavitate simultaneously and t’o the same 
extent. Any spread in t,hese quantities broadens t,he 

minimum. 

(b) Sucleation rate 

When no grain boundary sliding is allowed. as in 
the present, case, then, in general, nucleation is con- 
tinuous with t.ime i.e., the number of nuclei increases 
with time t,owards the number pmas. 

a by its definition in equation (1) is the primar- 
measure of t.he surface energy barrier t’o void nuclea- 
tion. At two-grain junctions, for inst,ance, the energy 
barrier to nucleation vanishes as a goes to zero. but 
grows. causing the nucleation rat.e t,o decrease rapidly, 
as 5: increases from 6 to 14’ (Fig. ia). For three- and 
four-grain junctions there is no barrier to nucleation 
when a = 30 and 36” respect.ively. A slight increase 
in x above these limits causes a rapid change in nuclea- 
tion rate as shown in Fig. i(b) nucleation ceases when 
a = 3i”. Since for a pure metal. a * iSo, no nuclea- 
tion will occur unless inclusions are present in the 
boundaries. 

(d) Type A and type B aoids 

For Type A voids at inclusions the angle /I (Fig. 2) 
is t’lre important surface energy parameber. Fracture 
is possible for @ < 20” as shown in Fig. i(c). The 
parameter (Z - ,J - ,u) as described in Fig. % and 
Section 1 is a measure of the surface energy barrier 
for Type B voids forming at inclusions. As shown in 
Fig. i(d) fract,ure is possible if (a + p - p) < 24’. 
In general! Type B nucleation sit.es will be favored 
ahen ,U <: a, i.e. when yIB < y (by consideration of 
equations (1 and 5). 

6. TIME TO RUPTURE III: CONTINUOUS 
NUCLEATION, WITH SLIDING 

6.1 Stress concentration at inclusions due to sliding 

Sliding across an inclusion in a grain boundary must 
be accommodated.(s*13’ If t,he sliding displacements 
are t,oo large to be accommodated elastically, then 
accommodation must be by diffusional flow or plastic 
AOM (Fig. 8). The u,pper bourd for the steady-state 

FIG:. s. Sliding across an inclusion must he accommodated 
by transpcirt of matter. 

stress? that, can be maintained at an inclusion during 
creep is t’hat required to drive the diffusive fluxes, 
either by lat,tice or by boundary diffusion, which will 
accommodate the incompa,tibility which appears there. 
Following a procedure described earliaP) the normal 
traction at the int,erface, CT,, can be calculated for an 

imposed sliding rate i? at the boundary; bypicallg its 
magnit,ude is (Ref. 9, Appendix B) 

where y is the diameter of an inclusion. For a strain 
rate of P and a grain size of d, t.he maximum possible 
sliding rate is 

Substituting this int,o equation (20) gives 
bound for (T,. 

The time t,o fracture curves shown in Figs 

(21) 

the upper 

9(a and b) 
were evaluated by using this estimate of o,, in equation 
(18 and 19). 

6.2 Fracture curved for type A and type B voids 

Fracture curves for Type A are given in Fig. 9(a) and 
for Type B voids in Fig. 9(b). Fracture is now possible 
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0.2 0.3 0.4 0 5 0.6 0.7 0.8 
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FIO. 9(a). Void nucleation and growth at inclusion for 
Type A voids with sliding. 

t On initial loading, or when the stress is suddenly changed. 
much larger strcsscs can appear: (*I’ these relax to the value 
quoted above with a characteristic relaxation time: but during 
that time, nucleation may occur. 
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FIG. 9(b). Void nucleation and growth at inclusion for 
Type B voids with sliding. 

for p < 40' and for (a + /3 - p) < 70'. It becomes 
easier to nucleate Type B voids than Type A voids. 
The ductility minimum is observed in these curves for 
the same reasons aa before; and, as before, the mini- 
mum moves to a lower t,emperature as the energy 
angle is increased. The nucleation behaviour, however, 
is different : instead of continuous nucleation we now 
get catastrophic nucleation : full nucleation occurs 
early in the fracture process. There are two reasons 
for this: first t,he maximum number of nucleation 
sites (equal t.0 the number of inclusions) is fewer; and 
second, c,, varies more rapidly with temperature than 
a, (at a constant strain-rate). 

The value of the parameters used in the generation 
of Figs. 9(a and b) were : inclusion size 1 pm, grain 
size 10 pm, inclusion density 10IO/mP, and strain-rate 
104/sec. 

6.3 Sensitivity of fracture curves to different parameters 

Figures 10-14 demonstrate the sensitivity of the 
fracture curves to strain rate, grain size, particle size, 
particle density and the distribution of particles. All 
curves were plotted for a + @ - p = 40’ (except in 
Fig. 10 where a + /? - ,u I= 20”) and for a = 35’, and 
(except where otherwise noted) a strain-rate of IO-“/ 
set, a grain size of 10 pm, an inclusion density of 
1010/m2 and an inclusion size of 1 pm. Stress con- 
centration due to sliding was taken into account and 
Type B void nucleation was considered. The relative 

aspects of the results would have remained the same 
if a different set of conditions had been chosen. 

(i) Strain-rate (Pig. 10). As strain rate decreases 
t,he minimum moves to a lower temperature and to a 
higher value for time-to-fract,ure. For example, at a 
strain rate of lo-a/sec the minimum occurs at 0.58 T,, 

and the time-to-fracture is 4.3 x 104sec; at lO-(l set 
t.he values are 0.4+&T, and 1.6 x lo6 sec. 

TEMPERATURE (*Cl 

““, ‘PO , 3TO , ST0 , 7po ‘$ 

STRAIN RATE 

0.2 0.3 0.4 0.5 0.6 0.7 0.6 

TEMPERATURE (‘K/T,) 

Fro. 10. The influence of strain rate on ductility. ‘1 T 
@ - p = XJ’, Type B voids. 

(ii) Grain size (Fig. 11). A smaller grain size im- 
proves ductility ; it moves the minimum to a lower 
temperature and a higher value of time-to-fracture. 
For example, for a grain size of 10 ,um the minimum 
occurs at 0.52 T,, and the time-to-fracture is 1.2 :.: 
105 set whereas for a grain size of 100 pm t,he values are 
0.62T, and 2.4 x 104sec. These conclusions are in 
qualitative agreement with published experimental 
,,&~'14.1" 

(iii) Inclusion size (Pig. 12). A smaller particle size 
improves duct,ilit,y. For example for a particle size of 
1 pm the minimum occurs at 0.52T, and the time- 
to-fracture is 1.2 x lo5 set whereas for a particle size 
of 0.1 pm t,he values are U.-&T_,, and 1.2 x 1O’sec. 

(iv) Inclusion density (Fig. 13). As expected from 
equation (11) the time-t.o-rupture varies inversely as 
the three-halves power of the number of inclusions per 
unit area in the grain boundary. 

(v) Distribution of the second phase (Fig. 14). Frac- 
ture curves are shown when the distribution of the 
second phase in the grain boundary changes although 
its total volume fraction remains constant. A larger 
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TEMPERATURE (‘Cl 

IO=, 

100 300 500 700 

I I 1 1 I I , II 

GRAIN SIZE 

t- I I I I I 

0.2 0.3 04 0.5 0.6 0.7 08 

TEMPERATURE (*K/T,,) 

E‘IG. 11. The influence of grain size on ductility. Type B 
xwids. 

TEMPERATURE rc) 

0-4 CM 

i 

PARTICLE SIZE 

I I I I I I I 
0.2 0.3 04 05 06 07 OS 

TEMPERATURE ( OK/T,,) 

FIG. 12. The influence of inclusion size on ductility. Type 
B voids. 

particle size moves the minimum t,o a higher t,empera- 

ture but also raises it t,o a higher value of time-t,o- 

fracture. For large particles the minimum occurs at 

0.6T,, and 3.4 x 1W set while for the small particles 

it occurs at O.MT_,, and 1.6 x lo3 sec. 

6.4 The role of interface energies 

It has been shown that the nucleation of voids is 

sensitive to the energy angle p for Type 3 voids and to 

TEMPERATURE (‘C) 

__ 100 300 500 700 

IO4 CM-’ - 

IO‘ CM-2 

r- I 

INCLUSION 
DENSITY 

02 03 0.4 05 0.6 07 OS 

TEMPERATURE (‘K/T,) 

FIG. 13. The influence of inclusion density on ductility. 
p = 1OV m. Type B voids. 

TEMPERATURE (‘C) 

10ZO, 
IO0 300 JO0 700 

I I 1 I I I f II 

CONSTANT VOLUME 
FRACTION OF 
SECOND PHASE 

0.2 0.3 0.4 0.5 0.6 0.7 0.6 

TEMPERATURE (‘K/TM1 

Flc. 14. The influence of the dispersion of second with 
thr toral volume of the second phase remaining constant. 

Type B voids. 

(a $ B - p) for Type B voids. The dependence of 

these angles on int)erface energies has been described 

in Section 2. Four imerfacial energies are involved: 

y and yr. the matrix free surface and the inculusion free 

surface energy and yR and yIB. the grain boundary 
int,erface and the inclusion-matrix interface energ_v. As 

an exa.mple, consider the case of grain boundaries in 

copper ront.aining silica inclusions. The interface ener- 

gies are approximat,ely: y = 1.14 J/m2, yr = 0.5 

J/m*. ;lB= 0.5.5 J/m2.0R) The angles a, ,6 and ,U 
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y. = 560 erq*mn~ 
y = 1140 brqslcm 

z= 500 erqwcm* 

YiS 
erqwcm2 

Q* 

so0 76 so 56 I10 

IO00 76 64 74 60 

IO70 76 60 78 5i-; 

1250 78 r7 j 47 ; 

1570 76 

$_, 

I 40 ; 78 30 1 
IS00 76 ’ 1 

211 : 80 

T&J 

i 24 ; 

TY?os” 

Fro. 1.5. The angie and interface energy relrttionship for a 
ooppef poI+yorystsI containing silics inclusions. Void 
n&e&ion IS possible for ,!2 < 40’ {Type d voids) and for 

r - /? - ,u < 60” (Type B voids). 

are given in Fig. 15 for various values of yIB. 
From consideration of results in this section we 
conclude that nucleation of Type -4 voids is possible 
for $ < PO0 or for yEB < 1.37 J/m” Nucleation of 
Type B voids is possible for (cc + p - ~6) < 60” or for 
yIB < 1.07 J/m*. These limits are good only for the 
set of creep conditions specified in this paper. The 
limits for other cases can be calculated. 

7. SUMMARY AND DISCUSSION 

The kinetics of stress induced nucleation and growth 
voids in a grain boundary has been analyzed in detail. 
Particular attention has been given to voids forming at 
second phase particles since t,hese appear to be t.he 
prime sites for nucleation in the grain boundary. The 
cogent results are: 

(a) Three types of void configuration in clean bound- 
aries and two types of configurations at second phase 
particles are possible. The geometrical properties of 
all the co~gur~t~ons can be described by similar 
general fin&ions. General solutions for the nucleation 
and growth of these voids are therefore possible. 

(b) An expression for time-to-fracture has been 
derived for growth by boundary diffusion when the 
number of voids remains constant. The results are 
extrapolated to include growth by volume diffusion. 
The early stqe of void growth is the slowest and ae- 
counts for most of the time-to-fracture. 

(c) Using classical nucleation theory, the nucleation 
of the voids has been calculated. The energy barrier 

for nucleation is a sensitive function of the free surface 
energy and of the volume of t,he void of critical radius. 

(d) d n~erica~ procedure has been developed which 
gives the t.ime-to-fracture when nucleation and growth 
occur continuously and simultaneously. 

(e) The time-to-rupture curves have been obtained 
for t,he case when a polycrystal is deformed at a con- 
stant strain-rate at, different temperatures. IThen no 
sliding of the boundaries is allowed then void nuclea- 
tion is possible only when interface energies are com- 
parable to the total surface energy of the void being 
created. These conditions may be met at non-wetting 
or almost non-wett.ing inclusions. 

(f) Stress concentrations are produced when sliding 
occurs in a boundary which contains inclusions. Upper 

bounds for these stresses are calculated and new time- 
to-fracture curves are obtained. Inclusions now be- 
come probable nucleation sites. Quantitative results 
are derived in t.erms of all the surface energies involved 
in the nucleation process. 

(g) The Dime-to-fracture vs temperature curves show 
a minimum ductility at approximately 0.6T,,. This 
is in agreemeut with the published experimental 
work.(2.3.17) 

(h) The time-to-fracture curves shift with change 
in strain-rate, grain size, inclusion size, inclusion dt?n- 
sity and the distribufion of the second phase. For 
resuhs see Figs. 10-14. 

(i) When no sliding is allowed the number of nuclei 
increase continuously with time but when stress con- 
centrat,ions due to sliding are tak8n int,o account then 
nucleation is cat~stropl~ic i.e. full nucleation occurs in 
the earIy stages of creep. Experimental work in sup 
port of the first(1*i8~ as well as the second process(“*ig) is 
found in the literature. 

(j) The results are applied to a copper polycrystal 
of grain size fO pm being strained at 10m4 set and con- 
taining silica inclusion of size 1 ,um dispersed at tf, den- 
sity of 10n’/m2 in the boundaries. 
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NOMENCLATURE 

surface free energy per unit area of the matrix 
material 

shear modulus-for copper: 4.2 ‘x: 10’ ME/m2 
critical radius for void nucleation 
free energy barrier t,o void nucleation 
void density of the number of voids per unit 
area in the grain boundary 
maximum number of possible nucleation sites 
per unit area 
number of critical nuclei per unit area 
number of inclusions per unit area of boundary 
time dependent probabilit,y of adding one 
vacancy to a nucleus of critical size 
nucleation rate of voids per unit area 
time to fracture in set 
stra.in rat’e 
grain size 

int,erface free energy per unit, area of the matrix 
grain boundary 
surface free energy of the inclusion 
int.erface free energy of the inclusion-matrix 
boundary 
total volume of the void 
total surface area of the void 
area of the grain boundary which t,he void oc- 
cupies 
a fun&on of energy angles which provides the 
void volume (equation 3a) 
a function of energy angles which provides the 
void surface area (equation 3c) 
a function of energy angles which provides the 
area B (equation 3c) 
energy angle as defined by equation (1) 
energy angle as defined by equat,ion (4) (also a 
constant in the calculation of appendix II) 
energy angle as defined by equation (5) 
grain boundary self-diffusion coefficient-its 
value for copper : l@+ exp (-24.8 kcal/mole/ 
RT) m2/sec 
lat’tice self-diffusion coefficient-its value for 
copper : 6.2 x 10-5 exp (-49.6 kcal/mole/ 
RT) m2/sec 

P 

t, 

: 
f 
c 

P 

TVI 

AP 

JB 

B 

average sliding rate of a grain boundary 
diameter of the inclusion 
normal tractions in the grain boundary which 
cause growth 
the excess chemical potential of the atoms in 
the boundary relative to the stress free state 
boundary flux of atoms 
net, number of atoms leaving per unit volume 
of the grain boundary during the steady state 
growth of voids. 

APPENDIX I 

(a) Properties of voids in 1:nclusion free boundaries 

The F(a) functions in equation (2) for t’he three and 
four grain junctions are as follows (8). 

Three grain junctions 

F,(a) = 2 x - 2 sin-i (i CsC a) 

+ & cos2 a(4 sin’ a - I)“* 

cos a(3 - cos2 a) 1 (Al.l) 

and 

bounda,ry thickness-its value: 4 x lo-lo m F,(x) - 2 cos aF,<la) = 3F,(a). (Al 2) 

n 
*WI 
fJ7l 

E 

G 

k2, 
P 

Pmar 

PC 

Pv 
Pt 

radius of curvature of the void surface 
radius of curvat)ure of the projection of t,he void 
in t,he grain boundary 
average spacing between the voids 
a fractional measure of the grain boundary area 
occupied by voids, defined by equation (10) 
atomic volume-for copper : 1.1 K 1O-2e m3 
external applied stress 
local normal stress at the interface which is 
responsible for void nucleat,ion 
Young’s modulus-for copper: 12.7 x 10” MB/ 
mz 
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Fozv grain junctions APPENDIX II 

P,(z) = 8 
[ 

; - co8-1 
j; - co8 a f (3 - A’)” 

1 

Time-to-F~radure: Fixed ,Smber of Xuclei 

A sin 2 (a) Steady state void growth rate 

+ A cos a[(4 sin2 a - JI~)“~ - L42/Ji] Let T,(R) be the normal tractions in the grain 
boundary in Fig. 3. The excess chemical potential of 

- 4 cos a(3 - coy2 a) sin-’ 
A 

( 1 
-> atoms in the boundary relative to the stress free state 
2 sina ifjC20) 

where 
Ap = -T,R. (A2.1) 

A = $[ti(4sinZ a - 1)112 - co8 21, (A1.3) 
The transport equation for boundary diffusion is : 

and where equation (A1.2) still connects the different JB = - 
F functions. 

ST W/4 (82.2) 

The steady-state condition is that all parts of t*he 
(b) Exact exprea8ionfor volume of a type 3 void boundary must give up or add t’he same amount of 

The volume of the region shown in Fig. Al is given material, i.e. 
by the following expression: V . J, = /9, (A2.3) 

v = 2r3(1, + I?), where @ is a constant and is equal to the number of 

where atoms removed per unit volume of the boundary 
which is thought of as having a thickness 6. These 

I, = 
(l 

z equations lead to t,he differential equation - 22) cos-1 i----_ 
41-x” 

(MA) 

- ZJl - I x2 - 22 dx, 

c2(Au) = - fl! 

1 which must be solved (in polar coordinates with cir- 
and 

s 

sin I9 
I, = (1 

L 

where 

and 

- x2) cos-l J- 
J1 

cular symmetry) subject to the boundary conditions: 

a& - = O, at R = 1. 
aR 

f 

and 
- co9 pJsin2 /? - x2 dx. (Al .4) .a..n 

L =COSa - cos~cosp 

sinp 

Z= 
cosa - xsinp 

CO8 /J 

(82.5a) 

! Ap=_ZEz at R = rB. (825b) 
I 

The answer is: 

Ap = - ‘g (R2 - rB2) 
B 

wQ1210g _- ‘B 2YQ . 

20, eR r 
(A2.6) 

The condition of mechanical equilibrium requires 
that: 

&a iD = ‘T,,(R)&rR dR. 
s 

(A2.i) 
r&v 

Substituting equations (d2.1 and A2.6) in (A2.i) gives 
an expression for /I. Since the growth rate of the void 
is equal to the amount of material added in t,he grain 
boundary, we have : 

(A2.S) 

Substitution of ,6 leads to the final result given in 
equation (8). 



(b) Calcu~l4ztian of tinl.e-to-fracture 

Tsing t.he definition for Aft) given in equation (10) 
and recalling from equat,ions (2) that 

and 

equation (8) 

d-4 

r= 

n-here 

$2 = r” FB(a) 
x 

Tr = r3F&), (A2.10a) 

can be re-n-ritt,en in the following form : 

(A3.11) 

,y:’ t1 - (r&)(1 - -4)) 

’ a log, rj_4 - Q A- _4(1 - A/B) ’ 
(A2.12) 

Here Y, is the wit,ical radius given by: 

(82.13) 

and p is t,he number of voids per unit area of t.he bound- 
ary: p = l/(2r)P. Equat.ion (A2.11) leads to an ex- 
pression for time to fracture, t,: 

3, n kT 1 
t,=--_-.-.--- F,(x) Amaz dA 

32 Q&b U, p3”* y;“(X) Amin f(A) ’ s 
(112.11) 

The integral in equation (AL14) has been evaluat,ed 
where the voids start to grow from crit$ical size (A2.13). 
Its value, for rC = 100 A’, and for a variable upper 
limit. is shown in Fig. -42. It is evident, that: the early 
stages of void growth are the slowest. The int*egral 
twomes relative]? insensitive t.0 A,, after A,,, > 
~1.1. In all computatioIls in t,his paper we assume 
_4,,,,, = 0.5 for which the int,egral is equal to 0.06. 

The integral is also insensitive to the value of ‘..lmin, 
defined by : 

This can be seen from Fig. -42, in which a variat,ion of 
p caod thus of -4mi,l) by a factor of lOa makes little 
difference to the value of the int*egral. 

i 

Itis/- 0.5 

b&k, (ni/l’) 

Fro. AZ. The change in tide-to-fr8ctu~ (the integral is 
proportional to it) with CL for two grain junctions. 

APPENDIX XII 
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A computer model was developed t.o simulate the 
eont,inuous nucleation and growth of voids in the 
grain boundary. Simultaneous nucleation and growth 
was assumed to occur at a constant rate during small, 
but discreet, time intervals At, where the subscript 
determines t,he sequence of the time intervals. The 
radius of a void, ri j, in the jt,h period depends upon t,he 
ith period during which it. was born. The number of 
nuclei of radius vij, Ap, will be given by: 

Ap, = pi At, (-43.1) 

where pt is given by equat,ion (18). When all the nuclea- 
t.ion sites, pmax, have been exhausted, the nucleation 
rat,e goes tlo zero. New nuclei are assigned the critical 
radius (equation A2.13). 

The computer simulation operates using equations 
(8 and 2). At ever-y time step the fractional grain 
boundary interface which has heel1 replaced by voids 
is calculated according t,o : 

-4, = Apirij”F,( r.). (-43.2) 

The value of j, for which a, > 0.5, is determined 
and the time to fracture is t,hen equal t*o zkB1 At,. If 
the value of j is less than 25, At is decreased until 
j > 25. Increasing the minimum value of ‘j’ from 
25 to 50 increased the a,ccuracy by only 10 per cent 
whereas t,he computer time needed for the calculation 
increased logarthmically. 

At t.wo-, three- and four-grain junctions, pmns was 
set equal to 

1 -? I 
and % 

a- 
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respectively. Here d is t.he grain size, and FC is the for inclusions, all the nucleation sibes were considered 
radius of a nucleus equal to t,he volume sum of the to be exhausted when the total number of nuclei was 
critical nucleus plus one atomic volume. equal to the number of inclusions. The stress in 

P,_ was taken to be equal to (p2p,/be) when in- equation (18) was assigned an upperbound value of 
elusions were present, p is the inclusion size and pp 2.0 x lo3 MN/m2 which was assumed to be the ideal 
the inclusion density in the grain boundary. However, fracture strength of the interface. 


